Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun Lin, ${ }^{*}$ Hao Lin, Jing-Wen Chen and Zijian Guo

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: elinjun@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.047$
$w R$ factor $=0.098$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}\left[N, N^{\prime}\right.$-o-phenylenebis(pyridine-2,6-dicarboxamide)] dimethylformamide solvate

In the title macrocyclic compound, 3,10,18,25,31,32-hexaazapentacyclo[25.3.1.1 ${ }^{12,16} .0^{4,9} .0^{19,24}$]dotriconta-1(30),4,6,8,12,14,-16(32),19,21,23,27(31),28-dodecaene-2,11,17,26-tetrone dimethylformamide solvate, $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the two pyridine rings are approximately perpendicular to each other, the dihedral angle between them being 82.1 (1) ${ }^{\circ}$. The macrocycle possesses mirror symmetry. The dihedral angle between the two benzene rings is $119.6(1)^{\circ}$.

Comment

Functional mimics of manganese superoxide dismutase (MnSOD) are of great potential as therapeutic agents (Riley, 1999). N-containing macrocyclic manganese complexes have high catalytic SOD activity and are chemically and biologically stable in vivo (Salvemini et al., 1999). N, N^{\prime}-(1,2-Phenyl-ene)bis(pyridine-2-carboxamide) and an $\mathrm{Mn}^{\mathrm{III}}$ complex have been synthesized and reported previously (Lin et al., 2003). The $\mathrm{Mn}^{\text {III }}$ complex proved itself a relatively effective superoxide scavenger and provided an interesting example of very low-molecular-weight Mn-SOD mimics. In this work, we report the crystal structure of the title compound, (I), whose structure is very similar to that of N, N^{\prime}-(1,2-phenylene)bis-(pyridine-2-carboxamide).

(I)

The molecular structure of (I) is shown in Fig. 1. The macrocyclic molecule is symmetrical about a mirror plane (symmetry code: $x, \frac{1}{2}-y, z$) which passes through the midpoints of the bonds $\mathrm{C} 7-\mathrm{C} 7 A$ and $\mathrm{C} 11-\mathrm{C} 11 A$. The X-ray crystallographic study shows that the bond lengths and angles are within expected ranges (Allen et al., 1987). The mean CN length in the pyridine rings is 1.331 (2) \AA. The $\mathrm{N} 2-\mathrm{C} 6$, $\mathrm{N} 2-\mathrm{C} 7, \mathrm{~N} 3-\mathrm{C} 10$ and $\mathrm{N} 3-\mathrm{C} 11$ bond distances are comparable to those in N, N^{\prime}-(1,2-phenylene)bis(pyridine-2-carboxamide) $[1.356$ (3), 1.406 (3), 1.343 (3) and 1.432 (3) \AA; Lin et

Received 15 April 2005 Accepted 27 April 2005 Online 7 May 2005

Figure 1
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Only one of the two disordered components of the solvent molecule is shown. The suffix A corresponds to the symmetry position $x, \frac{1}{2}-y, z$.

Figure 2
The packing in the crystal structure. Dashed lines indicate hydrogen bonds.
al., 2001]. The amide $\mathrm{N}-\mathrm{C}$ distances towards the bridging ring [$\mathrm{N} 2-\mathrm{C} 7$ and $\mathrm{N} 3-\mathrm{C} 11]$ are longer than those to the pyridine rings [$\mathrm{N} 2-\mathrm{C} 6$ and $\mathrm{N} 3-\mathrm{C} 10$].

In the title compound, the two pyridine rings are approximately perpendicular to each other, and the dihedral angle between them being 82.1 (1) ${ }^{\circ}$. The dihedral angle between the planes of the two benzene rings is 119.6 (1) \AA. The orientation of the dicarboxamide-2,6-pyridine substituents with respect to the benzene planes is defined by $\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 10-$ $\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 12$ torsion angles of $-51.6(3)$ and $51.0(3)^{\circ}$, respectively. Compound (I) contains a molecule of dimethylformamide, disordered over two sites in a 0.5 occupancy ratio. The crystal packing of compound (I) is shown in Fig. 2. There are four intramolecular hydrogen bonds (Table 2) in the crystal structure.

Experimental

The title compound was synthesized by the reaction of pyridine-2,6dicarboxylic acid (2 mmol) and 2-phenylenediamine (2 mmol) in the presence of triphenyl phosphate $(1 \mathrm{ml})$ in pyridine $(17 \mathrm{ml})$ at 373 K for 2 h (Leung et al., 1991). Crystals suitable for X-ray structure analysis were obtained by slow evaporation of a dimethylformamide solution at room temperature.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=624.06$
Orthorhombic, Pnma
$a=18.2331$ (17) Å
$b=15.3467$ (14) A
$c=9.5134(9) \AA$
$V=2662.0(4) \AA^{3}$
$Z=4$
$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker Smart Apex CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.966, T_{\text {max }}=0.972$
13689 measured reflections

Refinement

Refinement on F^{2}
Mo $K \alpha$ radiation
Cell parameters from 1146
reflections
$\theta=2.4-18.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.32 \times 0.28 \times 0.26 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.098$
$S=0.96$
2725 reflections
211 parameters

2725 independent reflections
1708 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-22 \rightarrow 22$
$k=-18 \rightarrow 18$
$l=-6 \rightarrow 11$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0411 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.329(2)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.347(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.333(2)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.416(2)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.343(2)$	$\mathrm{C} 6-\mathrm{O} 1$	$1.224(2)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.414(2)$	$\mathrm{C} 10-\mathrm{O} 2$	$1.219(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$117.69(16)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1$	$121.88(18)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7$	$125.22(16)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{N} 3$	$124.14(19)$
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 11$	$123.97(16)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 5$	$121.51(17)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 2$	$124.1(2)$		

organic papers

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2 $\cdots \mathrm{O}^{3}{ }^{\mathrm{i}}$	0.86	2.23	$3.010(2)$	150
N3-H3 $\mathrm{OB}^{\text {i }}{ }^{\text {i }}$	0.86	2.25	$3.034(2)$	152

Symmetry code: (i) $x, y, z+1$.

All H atoms were placed in geometrically calculated positions $\left(\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ for $\mathrm{CH}, \mathrm{C}-\mathrm{H}=0.96 \AA$ for CH_{3} and $\mathrm{N}-\mathrm{H}=0.86 \AA$), assigned fixed $U_{\text {eq }}(\mathrm{H})$ equal to 1.2 times $U_{\text {eq }}$ of the atoms to which they are attached (1.5 times for the methyl groups) and allowed to ride on their respective parent atoms. The dimethylformamide solvate is disordered over two sites with occupancy factors of 0.5 .

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China. The authors thank Mr Li Yi-Zhi and Mr Liu Yong-Jiang (Coordination Chemistry Institute, Nanjing University) for the X-ray data collection.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Leung, W.-H., Ma, J.-X., Yam, V. W.-W., Che, C.-M. \& Poon, C.-K. (1991). J. Chem. Soc. Dalton Trans. pp. 1071-1076.
Lin, J., Tu, C., Lin, H., Jiang, P. J., Ding, J. \& Guo, Z. (2003). Inorg. Chem. Commun. 6, 262-265.
Lin, J., Zhang, J.-Y., Xu, Y., Ke, X.-K \& Guo, Z. (2001). Acta Cryst. C57, 192194.

Riley, D. P. (1999). Chem. Rev. 99, 2573-2587.
Salvemini, D., Wang, Z.-Q., Zweier, J. L., Samouilov, A., Macarthur, H., Misko, T. P., Currie, M. G., Cuzzocrea, S., Sikorski, J. A. \& Riley, D. P. (1999). Science, 287, 304-306.

